
Week 46

Table of contents
Python: Introduction to curve fitting . 1
Estimation of binding affinity . 5
Dialysis experiment . 5
ADP binding to pyruvate kinase. 8

Free energy . 10
Interpretation of binding data. 11
Determination of type and strength of cooperativity . 13
Competition in ligand binding . 16

try:
 import fysisk_biokemi
 print("Already installed")
except ImportError:
 %pip install -q "fysisk_biokemi[colab] @ git+https://github.com/au-mbg/fysisk-biokemi.
git"

Python: Introduction to curve fitting
import numpy as np
import matplotlib.pyplot as plt
from scipy.optimize import curve_fit

Curve fitting is a fundamental skill in biochemistry and biophysics for analyzing experimental data. We use
curve fitting to determine parameters in mathematical models that describe biological processes like enzyme
kinetics, binding affinity, and reaction rates.

The basic idea is to find the parameters of a mathematical function that best describes our experimental data.

(a) Understanding the problem
Let’s start with some simple data that follows a linear relationship. The data below represents a theoretical
experiment where we measure some output 𝑦 at different input values 𝑥:

Generate some data with noise
x_data = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
y_data = np.array([2.1, 4.2, 6.0, 7.8, 10.1, 12.2, 13.9, 16.1, 18.0, 20.2])

Looking at this data, we can see it roughly follows a straight line. Let’s assume our model is:

𝑦 = 𝑎𝑥 + 𝑏

where 𝑎 and 𝑏 are parameters we want to determine from the data.

1

(b) Defining a fitting function
To use scipy.optimize.curve_fit, we need to define a function where:

• The first argument is the independent variable (x)
• The remaining arguments are the parameters to be fitted

Define a linear function for fitting:

def linear_function(x, a, b):
 return ... # Complete this line

Always a good idea to check that your function works as expected

linear_function(1, 2, 0) # Should give 2

2

Come up with another test case to check

print(linear_function(0, 2, 3)) # Should give 3
print(linear_function(1, 2, 3)) # Should give 5

(c) Your first curve fit
Now we can use curve_fit to find the best parameters. The basic syntax is:

popt, pcov = curve_fit(function, x_data, y_data, p0=initial_guess)

Where:

• function: The function we defined above
• x_data, y_data: Our experimental data
• p0: Initial guess for parameters (optional but recommended)
• popt: The optimized parameters (what we want!)
• pcov: Covariance matrix (contains information about parameter uncertainties)

Finish the cell below to perform the curve fit by adding the three missing arguments to the call to curve_fit.

Initial guess: a=2, b=0
p0 = [2, 0]

Perform the fit
popt, pcov = curve_fit(..., ..., ..., p0=p0)

Extract parameters
a_fit, b_fit = popt
print(f"Fitted parameters: a = {a_fit:.3f}, b = {b_fit:.3f}")

2

(d) Visualizing the fit
It’s crucial to always plot your fit to see how well it describes the data. To do this we evaluate the function with
the fitted parameters and a densely sampled independent variable.

Then we can plot it

fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(x_data, y_data, 'o', markersize=8, label='Experimental data')

Then we can plot the fit
ax.plot(..., ..., '-', linewidth=2, label=f'Fit: y = {a_fit:.2f}x + {b_fit:.2f}')
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.legend()
ax.set_title('Linear curve fit')

(e) Nonlinear fitting: Exponential decay
Many biological processes follow nonlinear relationships. Let’s work with exponential decay, which is common
in biochemistry (e.g., radioactive decay).

First, let’s generate some exponential data:

Generate exponential decay data
t = np.array([0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0])
True parameters: A=10, k=0.8
A_true, k_true = 10, 0.8
signal = A_true * np.exp(-k_true * t) + np.random.normal(0, 0.3, len(t))

fig, ax = plt.subplots(figsize=(6, 4))
ax.plot(t, signal, 'o', markersize=8)
ax.set_xlabel('Time')
ax.set_ylabel('Signal')
ax.set_title('Exponential decay data')

Text(0.5, 1.0, 'Exponential decay data')

3

The model we want to fit is:

signal = 𝐴𝑒−𝑘𝑡

Define the exponential decay function:

def exponential_decay(t, A, k):
 return ... # Complete this line

Now fit the exponential function to the data:

Initial guess: A=8, k=1
p0 = [8, 1]

Perform the fit
popt, pcov = curve_fit(..., ..., ..., p0=p0)

Extract parameters
A_fit, k_fit = popt
print(f"Fitted parameters: A = {A_fit:.3f}, k = {k_fit:.3f}")
print(f"True parameters: A = {A_true:.3f}, k = {k_true:.3f}")

Again we should plot to check that it looks as expected

t_smooth = np.linspace(0, 5, 100)
signal_fit = ... # Evaluate using the exponential_decay funciton

4

 Key points for successful curve fitting:

1. Always plot your data first to understand what kind of function might fit
2. Provide good initial guesses (p0) - poor guesses can lead to fitting failure
3. Use parameter bounds when you know physical constraints
4. Always plot the fit to visually check if it makes sense
5. Check if parameters are reasonable based on your biochemical knowledge
6. Use logarithmic plotting for data spanning many orders of magnitude

 Common pitfalls:

• Overfitting: Using too many parameters for the amount of data you have
• Poor initial guesses: Can cause the fit to fail or find a local minimum
• Ignoring physical constraints: Fitted parameters should make biological sense
• Not checking the fit visually: Always plot to see if the fit is reasonable

You now have the fundamental skills needed to fit curves to biochemical data! In the exercises, you’ll apply these
techniques to analyze real experimental data and extract meaningful biological parameters.

Estimation of binding affinity
(a) Train estimation skills
Train your estimation skills using the widget below.

from fysisk_biokemi.widgets.utils.colab import enable_custom_widget_colab
from fysisk_biokemi.widgets import estimate_kd

enable_custom_widget_colab()
estimate_kd()

(b) Compare to quadratic
The widget below shows the curves for 𝜃 using both the simple expression and the quadratic binding expression.
Use it to determine how large [P] has to be for them to be notably different.

from fysisk_biokemi.widgets.utils.colab import enable_custom_widget_colab
from fysisk_biokemi.widgets import visualize_simple_vs_quadratic

enable_custom_widget_colab()
visualize_simple_vs_quadratic()

Dialysis experiment
import numpy as np

5

A dialysis experiment was set up where equal amounts of a protein were separately dialyzing against buffers
containing different concentrations of a ligand – each measurement was done in triplicate. The average number
of ligands bound per protein molecule, 𝑛̄ were obtained from these experiments. The corresponding concentra-
tions of free ligand and values are given in dataset dialys-exper.xlsx.

(a) Load the dataset

from fysisk_biokemi.widgets import DataUploader
from IPython.display import display
uploader = DataUploader()
uploader.display()

Run the next cell after uploading the file

df = uploader.get_dataframe()
display(df)

(b) Explain calculation of 𝑛̄
Explain how the values of 𝑛̄ is calculated when knowing the concentrations of ligand inside and outside the
dialysis bag, as well as the total concentration of the protein, [Ptot].

(c) Molar concentrations
Convert the concentrations of free ligand to SI-units given in M, add it as a row to the DataFrame.

(c) Plot the data

import matplotlib.pyplot as plt

fig, ax = plt.subplots()

The 'o' means we plot just the points and don't connect them.
ax.plot(..., ..., 'o') # Replace ... with your code.

ax.set_xlabel('Free ligand [L] (M)', fontsize=16)
ax.set_ylabel(r'\bar{n}', fontsize=16)

(d) Prepare for fitting
Now we want to fit the data to extract 𝐾𝐷 and 𝜈max, by using the equation

𝜈([𝐿free]) = 𝜈max
[𝐿free]

𝐾𝐷 + [𝐿free]

To do so we need to implmenet it as a Python function

def nu(L, nu_max, K_D):
 # Replace ... with your code that calculates the above equation.
 # Be careful with parenthesis!
 result = ...
 return result

6

print(f"{nu(1, 1, 1) = }") # Should give 1/2
print(f"{nu(21, 47, 2.5) = }") # Should give 42

(e) Actually fitting

! Important

Fitting refers to finding the parameters that make an assumed functional form best ‘fit’ the data. Program-
matically we will use the curve_fit from the scipy package to do so. The signature of this function looks
like this

curve_fit(function,
 x_data,
 y_data,
 p0=[param_1, param_2, ...])

The arguments are

• function: A python function where the first argument is the independent variable, and other arguments
are the parameters of the functions.

• x_data: The observed values of the independent variable.
• y_data: The observed values of the dependent variable.
• p0: Initial guesses for the parameters.

When called curve_fit starts by calculating how well the functions fits the data with the initial parameters
in p0 and then iteratively improves the fit by trying new values for the parameters in an intelligent way.

The found parameters will generally depend on p0 and it is therefore necessary to provide a good (or good
enough) guess for p0.

Generally, the best way to learn more about a function is to read it’s documentation and then play around
with it. The documentation is in this case on the SciPy website. You don’t need to read it, unless you want
more details.

Finish the code to perform the fitting in the cell below.

from scipy.optimize import curve_fit

Choose the variables from the dataframe
x = df['Free Ligand [L](M)']
y = df['n-bar']

Initial guess
K_D_guess = ... # Your initial guess for K_D
nu_max_guess = ... # Your initial guess for nu_max
p0 = [K_D_guess, nu_max_guess]

Curve fit

7

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html

Replace the four ... with the correct arguments in the correct order.
popt, pcov = curve_fit(..., ..., ..., ...)

Print the parameters
nu_max_fit, K_D_fit = popt
print(f"{nu_max_fit = :1.3f} ")
print(f"{K_D_fit = :e}")

Are the parameters you find reasonable? How can you tell if they are reasonable by looking at the plot you made
earlier?

(f) Plot with fit
When we have the fitted parameters we can calculate and plot the function. To do so we make an array of values
for the independent variable and use our function to calculate the dependent variable

This makes 50 equally spaced points between 0 and the highest concentration x 1.2
L = np.linspace(0, x.max()*1.2, 50)

Calculate by plugging L and the found parameters into the function.
nu_calc = ...

Now that we calculated the dependent variable we can plot the fit along with the data.

ADP binding to pyruvate kinase.
The binding of ADP to the enzyme pyruvate kinase was measured by fluorescence. The enzyme concentration
was 4 μM throughout the titration, and each measurement was done in triplicate. The binding results were
obtained at 310 K and are given in the .csv-file adp-bindin-pyruva-kinase.csv.

(a) Load the dataset
As always, use the widget to load the dataset

from fysisk_biokemi.widgets import DataUploader
from IPython.display import display
uploader = DataUploader()
uploader.display()

Run the next cell after uploading the file

df = uploader.get_dataframe()
display(df)

(b) Units
The concentrations in the dataset are given in mM, add a new column to the DataFrame with the units given
in M.

8

df['[ADPtot](M)'] = ...
display(df)

(c) Free ADP concentration
For each value of 𝑛̄ calculate the concentration of [ADPfree] from [ADPtot] and [enzyme].

enzyme_conc = ...
df['[ADPfree](M)'] = ...
display(df)

(d) Make a plot
Make a plot of the free ligand concentration versus 𝑛̄.

fig, ax = plt.subplots(figsize=(7, 4))

Write the code to make the plot.
Add the arguments: marker='o', linestyle='none' to only plot points and not line
segments.
... # Add your code here!

ax.set_xlabel(r'$[\text{ADP}_{\text{free}}]$', fontsize=14)
ax.set_ylabel(r'\bar{n}', fontsize=14)

(f) Preparing for fitting
To fit we need a implement the function we want to fit the parameters of, the functional form is

𝑛 = 𝑛max
[𝐿]𝑛

𝐾𝐷 + [𝐿]𝑛

def n_bound(L, n_max, K_D, n_exp):
 return ...

print(f"{n_bound(1, 1, 1, 1) = }") # Should give 1/2
print(f"{n_bound(21, 47, 2.5, 1) = }") # Should give 42
print(f"{n_bound(21, 47, 2.5, 2) = }") # Should give 46.73..

(e) Fitting
Finish the code below to create a fit.

from scipy.optimize import curve_fit

Choose the variables from the dataframe
x = df['[ADPfree](M)']
y = df['nbar']

Initial guess
K_D_guess = ... # Your initial guess for K_D

9

nu_max_guess = ... # Your initial guess for nu_max
n_exp = ... # Your initial guess for the exponent.
p0 = [K_D_guess, nu_max_guess, n_exp]

Bounds
bounds = (0, np.inf) # We limit the parameters to be positve.

Curve fit
popt, pcov = curve_fit(n_bound, x, y, p0=p0, bounds=bounds)

Print the parameters
n_max_fit, K_D_fit, n_exp_fit = popt
print(f"{n_max_fit = :1.3f} ")
print(f"{K_D_fit = :e}")
print(f"{n_exp_fit = :1.3f} ")

Once we’ve obtained the fitted parameters we can plot the fit together with the data.

L = np.linspace(0, 1.2 * x.max(), 50)
n = n_bound(L, n_max_fit, K_D_fit, 1)

fig, ax = plt.subplots(figsize=(7, 4))
ax.plot(df['[ADPfree](M)'], df['nbar'], 'o', label='Observations')
ax.plot(L, n)
ax.axvline(K_D_fit, color='k', linewidth=0.5, linestyle='--')
ax.axhline(n_max_fit, color='k', linewidth=0.5, linestyle='--')

ax.set_xlabel(r'$[\text{ADP}_{\text{free}}]$', fontsize=14)
ax.set_ylabel(r'\bar{n}', fontsize=14)
ax.set_ylim([0, n.max()*1.1])

Free energy
Calculate the free energy for the association of the ADP-pyruvate kinase complex assuming 𝑅 = 8.314472 ×
10−3 kJ

mol ⋅K and 𝑇 = 310 K.

 Tip

Consider the difference between association and dissociation

Start by defining the two given constants as variables

R = ...
T = ...

And do the calculation

10

delta_G = ...
print(f"{delta_G = :.3f} kJ/mol")

Interpretation of binding data.
import numpy as np

The inter-bindin-data.xlsx contains a protein binding dataset.

(a) Load the dataset
Load the dataset using the widget below

import numpy as np
from fysisk_biokemi.widgets import DataUploader
from IPython.display import display
uploader = DataUploader()
uploader.display()

Run the next cell after uploading the file

df = uploader.get_dataframe()
display(df)

(b) SI Units
Add a new column to the DataFrame with the ligand concentration in SI units.

... # Replace ... with your code.
display(df)

(c) Plot the data
Make plots of the binding data directly with a linear and logarithmic x-axis.

Estimate 𝐾𝐷 by visual inspection of these plots!

import matplotlib.pyplot as plt

This makes a figure with two axes.
fig, axes = plt.subplots(1, 2, figsize=(9, 4))

Can with [0] to plot in the first axis.
ax = axes[0]
ax.plot(..., ..., 'o') # Replace ... with your code.
ax.set_xlabel('[L](M)', fontsize=14)
ax.set_ylabel(r'\bar{n}', fontsize=14)

ax = axes[1]

11

... # Put some code here - perhaps you can copy it from somewhere?
ax.set_xscale('log') # This make the x-axis logarithmic.

 Note

Ths command ax.set_xscale('log') tells matplotlib that we want the x-axis to use a log-scale.

k_d_estimate = ...

(d) Make a fit
Make a fit to determine 𝐾𝐷, as always we start by implementing the function to fit with

def ... # Give the function an appropriate name.
 return ... # Implement the expression for nbar

And then we can make the fit

from scipy.optimize import curve_fit

Choose the variables from the dataframe
x = ... # Choose x-data from the dataframe
y = ... # Choose y-data from the dataframe

Initial guess
p0 = [k_d_estimate]

Bounds
bounds = (0, np.inf) # We limit the parameters to be positve.

Curve fit
popt, pcov = ... # Call the curve_fit function.

Print the parameters
k_d_fit = popt[0]
print(f"{k_d_fit = :e}")

Compare
Use the figure below to compare your guess with the fitted value.

Saturation
Based on the value of 𝐾𝐷 found from the fit,

• At which concentration do you expect 10% saturation?
• At which concentration do you expect 90% saturation?

12

Determination of type and strength of cooperativity
import matplotlib.pyplot as plt
import numpy as np

The binding of NAD+ to the protein yeast glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was studied
using equilibrium dialysis. The enzyme concentration was 71 μM. The concentration of [NAD+

free] and the
corresponding values of 𝑛̄ were determined with the resulting data found in the dataset deter-type-streng-
coope.xlsx.

(a) Load the dataset
Load the dataset using the widget below

from fysisk_biokemi.widgets import DataUploader
from IPython.display import display
uploader = DataUploader()
uploader.display()

Run the next cell after uploading the file

df = uploader.get_dataframe()
display(df)

(b) Averaging and units.
Start by adding a new column to the DataFrame with the average value of 𝑛̄ across the three series

 Tip

Remember that you can set a new column based on a computation using one or more other columns, e.g.

df['new_col'] = df['col1'] + df['col2']

df['nbar_avg'] = ...

Now also add a column with the ligand concentration in SI units with the column-name [NAD+free]_(M).

... # Your code here.
display(df)

Finally, set the concentration of the GADPH in SI units

 c_gadph = 71 * 10**(-6)

(c) Plot
Make a plot of the average 𝑛̄ as a function of [NAD+

free].

13

fig, ax = plt.subplots(figsize=(8, 4))

Your code to plot here.
...

This sets the labels.
ax.set_xlabel(r'$[\text{NAD}^{+}_\text{free}]$', fontsize=14)
ax.set_ylabel(r'\bar{n}', fontsize=14)
plt.show()

(d) Scatchard plot
Make a Scatchard plot based on the average 𝑛̄.

Calculate nbar / L
nbar_over_L = ...

fig, ax = plt.subplots(figsize=(6, 4))

ax.plot(..., ... 'o') # Plot the right thins.

ax.set_xlabel(r'\bar{n}', fontsize=14)
ax.set_ylabel(r'\bar{n}/L', fontsize=14)
ax.set_xlim([0, df['nbar_avg'].max()*1.2])
ax.set_ylim([0, nbar_over_L.max() * 1.2])

(e) Binding sites
How many binding sites does GAPDH contain for NAD+?

(f) Cooperativity
What type of cooperativity do the plots indicate?

(g) Fit
Make a fit using the functional form

𝑛̄ = 𝑁 [𝐿]ℎ

𝐾𝐷 + [𝐿]ℎ

As usual, start by defining the function in Python

def n_bar(L, N, k_d, h):
 # Replace ... with your code.
 # Be careful with parentheses.
 result = ...
 return result

Now we can fit

from scipy.optimize import curve_fit

14

This selects the '[NAD+free]_(m)'-column three times and stitches it together.
x = np.concatenate([df['[NAD+free]_(M)'], df['[NAD+free]_(M)'], df['[NAD+free]_(M)']])
Do the same to stitch together the nbar1, nbar2 and nbar3 columns.
y = ...

Initial guess
p0 = [..., ..., ...]

Bounds
bounds = (0, np.inf) # We limit the parameters to be positve.

Curve fit
popt, pcov = curve_fit(n_bar, x, y, p0=p0, bounds=bounds)

Print the parameters
N_fit, k_d_fit, h_fit = popt
print(f"{N_fit = :.3f}")
print(f"{k_d_fit = :e}")
print(f"{h_fit = :.3f}")

 Note

The function np.concatenate takes a number of arrays and makes a new array that consisting of the originals
one after each other. For example,

A = np.array([1, 2, 3])
B = np.array([4, 5, 6])
C = np.concatenate([A, B])
print(C)

[1 2 3 4 5 6]

(h) Plot with fit

L = np.linspace(0, df['[NAD+free]_(M)'].max()*1.5)
n_bar_fit = n_bar(L, N_fit, k_d_fit, h_fit)

fig, ax = plt.subplots(figsize=(8, 4))
ax.plot(x, y, 'o', label='Data')
ax.plot(L, n_bar_fit, '-', label='Fit')
ax.axhline(N_fit, color='C2', label='N from fit')
ax.axvline(k_d_fit, color='C3', label=r'K_D from fit')
ax.set_xlabel(r'$[\text{NAD}^{+}_\text{free}]$', fontsize=14)
ax.set_ylabel(r'\bar{n}', fontsize=14)
ax.legend()
plt.show()

15

Competition in ligand binding
Below is given the general expression for saturation of a binding site by one of the ligands, 𝐿, when two ligands
𝐿 and 𝐶 are competing for binding to the same site on a protein. Assume that [𝑃𝑇] = 10−9 M.

𝜃 = [𝑃𝐿]
[𝑃𝑇]

= 1
𝐾𝐷
[𝐿] (1 + [𝐶]

𝐾𝐶
) + 1

Consider these four situations

𝐾𝐷 [𝐿𝑇] 𝐾𝐶 [𝐶𝑇]

1 1 · 10−5 M 1 · 10−3 M 0

2 1 · 10−5 M 1 · 10−3 M 1 · 10−6 M 1 · 10−2 M

3 1 · 10−5 M 1 · 10−3 M 1 · 10−5 M 1 · 10−3 M

4 1 · 10−5 M 1 · 10−5 M 1 · 10−6 M 1 · 10−6 M

(a) Explain simplification
Explain how the fact that [𝑃𝑇] is much smaller than [𝐿𝑇] and [𝐶𝑇] simplifies the calculations using the above
equation.

(b) Ligand degree of saturation
Calculate the degree of saturation of the protein with ligand 𝐿 in the four situations.

Start by writing a Python function that calculates the degree of saturation 𝜃.

def bound_fraction(L, C, Kd, Kc):
 # Write the equation for binding saturation. Be careful with parentheses!
 theta = ...
 return theta

Then use that function to calculate 𝜃 for each situation.

theta_L_1 = bound_fraction(..., ..., ..., ...)
theta_L_2 = ...
theta_L_3 = ...
theta_L_4 = ...
print(f"{theta_L_1 = :.3f}")
print(f"{theta_L_2 = :.3f}")
print(f"{theta_L_3 = :.3f}")
print(f"{theta_L_4 = :.3f}")

(c) Competitor degree of saturation
What is the degree of saturation with respect to the competitor 𝐶 in #1, #2 and #4?

16

theta_C_1 = ...
theta_C_2 = ...
theta_C_3 = ...
theta_C_4 = ...

print(f"{theta_C_1 = :.3f}")
print(f"{theta_C_2 = :.3f}")
print(f"{theta_C_3 = :.3f}")
print(f"{theta_C_4 = :.3f}")

(d) Fraction of [𝑃free]
What is the fraction of [𝑃free] in #2, #3, #4?

 Tip

Consider how to express the fraction of [𝑃free] in terms of theta_L_X and theta_C_X.

theta_free_1 = ...
theta_free_2 = ...
theta_free_3 = ...
theta_free_4 = ...

print(f"{theta_free_1 = :.3f}")
print(f"{theta_free_2 = :.3f}")
print(f"{theta_free_3 = :.3f}")
print(f"{theta_free_4 = :.3f}")

17

	Python: Introduction to curve fitting
	(a) Understanding the problem
	(b) Defining a fitting function
	(c) Your first curve fit
	(d) Visualizing the fit
	(e) Nonlinear fitting: Exponential decay

	Estimation of binding affinity
	(a) Train estimation skills
	(b) Compare to quadratic

	Dialysis experiment
	(a) Load the dataset
	(b) Explain calculation of n
	(c) Molar concentrations
	(c) Plot the data
	(d) Prepare for fitting
	(e) Actually fitting
	(f) Plot with fit

	ADP binding to pyruvate kinase.
	(a) Load the dataset
	(b) Units
	(c) Free ADP concentration
	(d) Make a plot
	(f) Preparing for fitting
	(e) Fitting
	Free energy

	Interpretation of binding data.
	(a) Load the dataset
	(b) SI Units
	(c) Plot the data
	(d) Make a fit
	Compare
	Saturation

	Determination of type and strength of cooperativity
	(a) Load the dataset
	(b) Averaging and units.
	(c) Plot
	(d) Scatchard plot
	(e) Binding sites
	(f) Cooperativity
	(g) Fit
	(h) Plot with fit

	Competition in ligand binding
	(a) Explain simplification
	(b) Ligand degree of saturation
	(c) Competitor degree of saturation
	(d) Fraction of [Pf r e e]

